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Holistic production control is a concept that introduces production optimisation by
employing model-based, closed-loop control of the principal production Performance Indi-
cators (pPIs). The concept relies on the development of a simple black-box model that
describes the relation between the main pPIs and the most influential input (manipulative)
variables. In this article the modelling aspects of the holistic production control implemen-
tation are presented. The main steps of the production modelling procedure are described,
such as data preprocessing, the definition of pPIs, the selection of input variables and the
derivation of black-box models. Particular emphasis is given to a modelling approach based
on neural networks and a corresponding modelling assistant tool, which has been devel-
oped to support the modelling procedure. The approach is illustrated on the Tennessee
Eastman benchmark process, where neural network models for three main production per-
formance indicators, i.e., costs, quality and production rate, are derived.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

For advanced manufacturing it is important that the production process is efficient, adaptable and flexible to quickly
adjust to customers’ demands and at the same time minimises the production costs. Therefore, during the production
process, fast and accurate actions are needed at all management levels in a factory.

Information technology (IT) has a considerable impact on the efficiency and quality of manufacturing, especially in terms
of enabling better control and optimisation. However, in the past its introduction was, for several reasons, more oriented to
the control of manufacturing processes (control of particular machines, reactors, devices, etc.) and to the support of business
functions (see the functional hierarchy model of a production enterprise in Fig. 1). It was only some 15 years ago that IT
started to penetrate into the so-called production control level, where scheduling, dispatching, plant-wide optimisations
and local optimisations are typically performed.

Nowadays, one can say that the different hierarchical levels in a factory are relatively well supported by IT tools, which
should enable the effective supervision and control of particular subsystems. The available models and standards are merg-
ing traditionally disparate functions and systems across the enterprise. The corresponding information-technology solutions
allow access of the right information, in the right place, at the right time and in the right format. However, there are at least
two important challenges that remain. The first one is the lack of integration and coordination among different control levels,
which results in the suboptimal operation of the entire plant. And the second one is the vast amount of collected data, and
the few ideas about how to cope with it and how to use it for appropriate decisions and production optimisation.

Over the years some research areas have emerged that face these issues. One of them is the area of plant-wide control,
which was developed within the process engineering community. The entire flow-sheet, not only the lower levels, are
. All rights reserved.
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Nomenclature

Ku;uð�Þ vector of manipulative variables
R available input space
K vector of production performance indicators (pPIs)
K�; r reference vector from business level
KkM model prediction of production performance indicators
N number of samples
ZN measured data set
uðtÞ input signal
yðtÞ output signal
ŷðtÞ; gð�Þ predictor of yðtÞ
uðtÞ regression vector
H parameter vector
na number of delayed outputs in uðtÞ
nb number of delayed inputs in uðtÞ
nk time delay
D weight decay factor
ys; ym setpoint and minimisation oriented pPIs
Qs;Qm control objective weights for ys and ym

Abbreviations
RTO real-time optimisation
HPC holistic production control
pPIs production performance indicators
MES manufacturing execution system
MPC model predictive control
TE Tennessee Eastman
NARX nonlinear autoregressive model with exogenous inputs
MSE mean-square error
OBS optimal brain surgeon
NPE (NCE) normalised prediction (control) error
IAE integral of absolute error
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covered and the emphasis is on control structure design. In this frame, an important part of research is dealing with a
hierarchical decomposition of the original control design problem based on heuristic rules. The heuristic logic is developed
so as to keep the process variability and therefore the operational plant objectives within acceptable limits for a given set of
disturbances (see [1] or [2]). The plant-wide control is also studied in discrete manufacturing, where the existing challenges
require a form of technical intelligence that goes beyond simple data, through information to knowledge [3]. The integration
of data-mining methods [4–6] into the decision making on the production control level is required. The resulting knowledge,
in the form of static and dynamic models, will facilitate new opportunities for collaboration throughout the plant, and across
the supply chain. This will enable us to meet the increasing demands on flexibility and reactivity within the Intelligence in
Manufacturing (IIM) paradigm.

In recent years, closed-loop control is also being used at the so-called production control level – the level between the busi-
ness and process control levels. One promising approach here is Real-Time Optimisation (RTO) [7]. RTO is defined as a mod-
el-based, upper-level, control system that is operated in a closed loop and provides set-points to the lower-level control
systems in order to keep the process operation as close as possible to the economic optimum. A summary of the recent devel-
opments and applications of dynamic real-time optimisation is given by Kadam and Marquardt [8]. Aspects of how to use
Model Predictive Control within the RTO structure are presented by Rawlings and Amrit [9]. Similar concepts could also
be found in the field of discrete manufacturing (e.g. [10]). On the other hand, there are mathematically oriented approaches
based on the solution to a given large-scale, mixed-integer, nonlinear-programming, dynamic-optimisation problem, which
in the limit should be able to simultaneously determine the optimal size of the process units and their interconnections as
well as the optimal control scheme configuration (see [11] for a review).

The main disadvantage of these approaches is the huge complexity, the need to cope with an enormous number of details
and the low robustness of solutions to changes in the production. Another approach is represented by holistic production con-
trol (HPC), which introduces the concept for production optimisation, with detailed analysis of the historical production pro-
cess data. HPC can be viewed as an optimisation and control upgrade for the manufacturing execution systems (MES),
employing the advanced analysis of process data to support the production manager with the decisions needed to realise
business objectives.



Fig. 1. Process hierarchy.
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The idea is based on the work of Zorzut et al. [12], where closed-loop control is implemented on the production process
for a polymerisation plant. Key performance indicators (KPIs) of production, referred to as ‘‘production performance indica-
tors (pPIs)’’ are introduced to reduce the extensive amount of measured process data and to aggregate the important infor-
mation concerning process economic efficiency. The optimisation and control of the production is based on the closed-loop
control of a few pPIs, using a simple black-box model. The usage of pPIs for production control is justified also by ISO stan-
dard [13], which states that key performance indicators for manufacturing operations tend to be in the 20% of the total num-
ber of process and resource measurements being observed, while they have 80% or more impact on the processes being
tracked.

Modelling approaches with key performance indicators can be noticed in the literature and some commercial products.
However, these solutions are mostly focused only on the business planning level. Commercial business platforms mainly en-
able monitoring and managing of business performance indicators for historical data and in real-time (e.g. [14]), while other
solutions offer guidelines on how to formulate and use business oriented KPI models to improve organisation performance
and how to describe the complex interrelationships between different parts of the business process. Historical data oriented
approaches have also been reported. Here interactions among the process parameters and the goal KPI are directly identified
to support business KPI monitoring and business process redesign (e.g. [15–17]).

On the other hand, there are also some commercially available MES oriented solutions for knowledge extraction on the
production level (e.g. [18,19]), which can be used for data collection and to some level also offer the functionality to review
some performance indicators. Basics for these tools are mostly oriented to descriptive data-mining or static production anal-
ysis. Therefore, users of these tools must be very knowledgeable and have a deep theoretical background to extract useful
information to be used to correct production.

In this article we present a concept which extends the usability of such support systems, as dynamical modelling of the
production oriented PIs is introduced and the decision-support is realised with the employment of solutions from the pro-
cess control field.

As the extensive experimentations on processes are usually severely restricted, the main problem is how to obtain an
appropriate model for the principal pPIs, using historical records of the production process data only. Therefore, an effective
empirical dynamic modelling approach is required, which would be able to extract the relevant information from the vast
amount of production data. In the engineering community the most common approaches are focused on the parametric
models [20]. Another approach is to use nonparametric modelling principles, where the sizes of the models are allowed
to grow with the data size (e.g. [21]).

The article addresses a problem, how to efficiently synthesise methods widely used for data-mining, system identification
and process control, in order to support decisions on the production control level. A solution with the closed loop control of
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the main pPIs is presented, where appropriate steps of the production modelling procedure are specified and illustrated on
the Tennessee Eastman benchmark process. Particular emphasis in this article is given to the parametric modelling approach,
based on neural networks and to a corresponding software tool that was developed to support the modelling procedure. This
modelling-assistant tool tends to automate and to simplify the modelling steps for HPC, in order to ease the model identi-
fication also for non-modelling experts, like the production managers. Furthermore, input variable selection, which is often
neglected in a modelling procedure, is identified as a crucial modelling step in HPC design. Some preliminary results of this
work can be found in [22].

This article is structured as follows. Section 2 introduces the holistic production concept. Section 3 presents the steps
needed to identify the appropriate model, with the employment of black-box modelling principles. Section 4 introduces
the developed modelling assistant. In Section 5, a modelling procedure for HPC is demonstrated for the case study of the Ten-
nessee Eastman benchmark plant. Finally, the conclusions are given in Section 6.

2. Holistic production control

The concept of holistic production control can be best explained by the scheme depicted in Fig. 2. The process we would
like to control is indicated by the block Production process. Note that this block also covers the low-level process control. Dif-
ferent inputs (Ku) are available to manipulate the production process. These inputs are actually the reference values for the
process control loops and/or other manipulating variables not used within the stabilisation loops. On the other hand, there
are many measurable disturbances (d) and outputs (y), which are used to calculate on-line the pPIs (K) – pPI calculation block.
The pPIs are the production variables that are used by the production manager to determine the appropriate input values
(Ku) in order to optimise the production process. The demands from the business control level are given as reference pPIs
(K�). The attempt of the concept described here is to help the production manager with the decision-making process, which
would close the loop for the introduction of the Production controller & Optimiser.

One of the possible solutions with this approach is to apply model-based control and optimisation. To enable this, an
appropriate model describing the behaviour of the process projected on pPIs is required (the pPI model). The model can
be updated online and can provide the controller with the predicted outputs KjM. The model can also consider the measur-
able disturbances (d). Based on current values K, the predicted outputs KjM and the reference values K� (i.e., the planned
business goals) the Production controller & Optimiser determines the appropriate input values Ku and in this way supports
(or substitutes) the production manager (Eq. (1)).
Fig. 2. Concept of holistic production control.
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cKu ¼ arg min
Ku�R

CðK;K�;KjMÞ ð1Þ
How to derive an appropriate pPI model represents the main challenge of the HPC approach.
3. Production modelling for holistic production control

Modern manufacturing systems are in many cases and for various reasons too complex to be accurately described
analytically from first principles. Instead, one can assume that the relationship between the inputs and the outputs can
be described by a stochastic, high-dimensional model from a class of generally nonlinear model structures.

The production model has to include enough details of the production process to reflect the dynamics for production
control. This model should be relatively simple in comparison to the models used for the process control level, yet because
of the overall complexity and the limitations of testing the process, this task is extremely complex. Production control
usually requires that the model is easy to adapt online as well. Therefore, the main objective is the development of the
concept of identifying a relatively simple, input–output model of the production.

The main steps of the production modelling are shown in Fig. 3. More detailed discussion about each of these steps and a
short overview of the potential methodologies are given in the following subsections.

3.1. Data preprocessing

Special attention is needed when data from a historical production database are used. From the vast amount of data, the
informative portions need to be identified. These data segments should cover the interesting dynamics of the pPIs, for which
we would like to determine the future behaviour. Furthermore, any outliers or missing data need to be properly analysed,
and to cover all the process operating conditions an uneven data distribution is needed.

Data-cleaning procedures can be applied to detect and remove any outliers present in the data. As pointed out in [20],
nonlinear data-cleaning procedures are recommended. We can find many filters in the literature proposed for this task:
the Martin–Thomson filter [23,24], the FIR-median hybrid (FMH) filter [25], the Hampel filter [26], etc.

3.2. Definition of production performance indicators – pPIs

The research field of performance measurement systems (PMSs) is becoming increasingly important for industry and aca-
demics [27]. Performance indicators (PIs) are commonly used by organisations to evaluate their overall economic success
and many recommendations have been presented on how to specify such indicators [27]. These indicators should cover
the relevant business aspects of the specific process, where the status of the process should be evaluated with relatively
short-term indicators, since longer-scale business estimations (e.g., an annual profit report) are useless for quick process
adjustments [28].

As mentioned, the production objectives are usually aggregated in production performance indicators (pPIs). The selec-
tion of these pPIs should be performed manually, with extensive consideration of the production expert’s knowledge of the
process.

3.3. Input variables selection

To simplify the model and to enhance model’s accuracy only the most relevant manipulative variables need to be iden-
tified. On the basis of the historical process data, an extensive analysis is needed to evaluate which inputs have the biggest
impact on the selected pPIs.

Variable selection is already a widely applied methodology in the field of data mining. But, as noted by some authors, like
Smits et al. [29], in modelling projects it is mostly assumed that true inputs are a-priori known or all the available inputs are
used in a model. To avoid the so-called curse-of-dimensionality, which essentially limits the robustness of a data-based
model, only the most relevant inputs need to be selected. This represents an especially important step for HPC design, as
in real-world production processes many potential variables are available. Furthermore, as aggregated pPIs are connected
with many process variables it is often found that some a-priori excluded inputs are later identified as significant, and vice
versa.
Historical
process

data

Data
preprocessing

Definition of
production PIs

Input
variable
selection

Black-box
process

modelling
pPI prediction

model

Fig. 3. Production control design steps.



6 M. Glavan et al. / Simulation Modelling Practice and Theory 30 (2013) 1–20
In the literature, three major principles for variable selection are used [30]:

� feature construction,
� variable ranking,
� variable subset selection.

Feature construction represents methods where all the inputs are transformed to a subspace with reduced dimensionality.
The transformation can be used to incorporate domain knowledge or to construct an orthogonal subspace in order to remove
any collinearities among variables. So, while the dimensionality is reduced, the new variables should incorporate the major-
ity of the information present in the original variables. A variable transformation can be performed with clustering, a linear
transformation of the input variables (e.g., principal component analysis – PCA, linear discriminant analysis – LDA, factor
analysis – FA)[31] or more complex nonlinear transformations (e.g., methods presented in [32]).

Variable ranking methods represent simple methods, successively evaluating all the potential inputs according to their
importance for the output variable. All potential input variables are then appropriately ranked, and less influential inputs
are neglected with a consideration of some threshold. Methods like analysis of correlations, mutual information, gamma test,
etc. are usually employed.

On the other hand, variable subset selection methods also test combinations of the input variables, since completely use-
less variables can provide a significant prediction improvement, when used with some other variables [30]. Such methods
consists of four main steps [33]: the generation of a candidate subset, subset evaluation and selection, stopping criteria and
model validation (see Fig. 4).

An exhaustive selection procedure examines all the possible subsets, and consequently the optimality of the solution can
be guaranteed. On the other hand, it is computationally very expensive, since all the possible combinations should be tested.
Therefore, random methods (e.g., genetic algorithms) and stepwise algorithms (forward selection, backward elimination or
their combination) are widely applied. At the end the selected inputs need to be validated to see if the solution is sufficient.

According to how the subsets are evaluated, the methods found in the literature can generally be divided into two main
groups: model-free methods (filter methods) and model-based methods (wrapper methods) [34]. Model-free methods only
need low computational capabilities, while the selection is based on an analysis of the available data. Therefore, the input
analysis is based on statistical tests, properties of function, etc. (e.g., partial mutual information [35], Lipschitz coefficients
[36], consistency and inconsistency measures [34], etc.). Model-based methods result in evaluation of models (e.g., fuzzy
models, neural networks, etc.) with a different selection of input variables. Many models are created and evaluated in order
to determine the optimal regression vector.

As we are dealing with dynamical systems, the current values of production performance indicators are not dependent
only on the current input values, but also on their time-delayed values. The input–selection problem is therefore augmented
by the selection of lagged inputs and outputs that are used as regressors.

3.4. Black-box process modelling

The HPC efficiency is closely related to the production model, which should describe the main features of the production
process with an acceptable level of approximation. The production process is typically a highly complex process, with non-
linear relationships among the vast quantity of process variables. Since our model should be simple enough and the devel-
opment time needs to be short, black-box modelling techniques are preferred. Furthermore, the production model should be
extracted mainly from the historical process data, since extensive experimentation on the real process is often too expensive
or restricted. If the process characteristics were to change during the use of the production model, new process data should
be analysed and a better model extracted. The cyclical generation and validation of new models will enable a rather conser-
vative adaptation of the model-in-use to long-term changes in the production.

The main idea of the parametric black-box modelling techniques is to trim some universal input–output functions, with a
fixed number of parameters, to accurately represent the true process dynamics (2). The goal is to minimise the mismatch eðtÞ
between the true process response yðtÞ and the model prediction gð�Þ, where the trimming is performed solely on the basis of
the process input–output data pairs ZN ¼ fuðtÞ; yðtÞgN

t¼1.
yðtÞ ¼ gðuðtÞ; hÞ þ eðtÞ ð2Þ
Fig. 4. Input-variable subset selection procedure [33].



Fig. 5. Feed-forward network architecture with one hidden layer.
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Black-box models can be seen as the connection of two mappings [37]. The first mapping constructs the regression vector
uðtÞ from past inputs and outputs, which enables a representation of the dynamical model behaviour. Another mapping pre-
dicts the future behaviour of the system ŷðtÞ, with the nonlinear mapping from the regressor space to the system output. This
nonlinear mapping is found within a family of functions (3), parameterised by the parameter vector (h), where gk refers to
the basis function, usually derived from a single, mother basis function.
ŷðtÞ ¼ gðuðtÞ; hÞ ¼
Xn

k¼1

akgkðuðtÞ;bk; ckÞ;

h ¼ ½a1 � � �an;b1 � � �bn; c1; � � � ; cn�
T

ð3Þ
From such a flexible structure, popular nonlinear mappings can be derived, like Neural Networks, Wavelets, Kernel Esti-
mators, Nearest Neighbors, B-splines, Fuzzy models, etc. [38].

A neural network’s ability to learn a complex nonlinear mapping only by example has received a lot of scientific attention
over the past two decades. They have been found to be a useful tool for modelling and their practical use has been proved in
different realisations in industry [39]. A multi-layer network comprising at least one hidden layer and a continuous nonlin-
ear activation function has been recognised as a universal approximator [40]. Therefore, in theory, any continuous function
can be approximated to an arbitrary degree of exactness.

The architecture of the multi-layer network is depicted in Fig. 5. The basis function expansion gk contains adjustable
parameters (bk and ck):
gkðuðtÞÞ ¼ jðuðtÞ; bk; ckÞ ¼ jðbT
kuðtÞ þ ckÞ ð4Þ
The network overall mapping is not constructed as a linear combination of basis functions (3), rather they are connected
in a feedforward manner, where the outputs from the first layer of neurons represent the regression vector, for the basis
functions in the next layer gð2Þk [38].

The model fitted on the training data set ZN does not necessarily represent the true process dynamic, since it can be over-
trained. Therefore, early stopping methods are widely used, where a cross-validation of the model on an additional data set is
performed to test the model. Another approach is to directly influence the least-influential parameters of the model struc-
ture during training (e.g., regularisation methods [37]) or to completely remove the redundant parameters from the already
trained model (e.g., network pruning [40]). With an adjusted model structure the model is simplified and the generalisation
capabilities are enhanced.

4. Modelling assistant

To ease the modelling procedure for the HPC, a user-friendly tool is being developed. Using such a support tool, the sys-
tem integrator and the production manager would have the possibility to identify a production model, based on the histor-
ical operational data of the process, and integrate it in a model-based HPC solution.

The main purpose of the developed modelling assistant is to automate the model-development procedure and to support
the manipulation and maintenance of already existing models. As the potential users of such a tool are non-modelling ex-
perts (e.g., production managers), the program tends to simplify the model-identification procedure, where the user would
not need to understand a detailed identification theory.

The assistant is comprised of an input–output analysis component with a cross-correlation input-variable selection algo-
rithm and a neural network modelling procedure. The main characteristics of the tool are:

� incorporation of an input-variable selection step as a part of the model structure selection,
� automation of the modelling procedure,
� generation of many models with different training settings and alternative model structures,
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� automatic validation of the models to extract the most robust model,
� validation of the models on the fresh production data.

Black-box modelling is based on the one-hidden-layer network model, with sigmoid transfer functions in the hidden layer
and linear transfer functions in the output layer. This model structure was considered, as many difficult and diverse prob-
lems have been successfully modelled with such a type of neural network [40].

Simple and straightforward modelling solutions are implemented in order to limit the user-controlled settings. While the
convergence of the model to an optimal solution strongly depends on the selection of the initial weights, different initial val-
ues are sequentially considered to avoid a convergence to local minima. For each initialisation of the inputs an additional
model is constructed. Furthermore, the optimal network topology cannot be predicted in advance, since the number of neu-
rons in the hidden layer influences the complexity of the neural network’s nonlinearities. Therefore, a trial-and-error ap-
proach is usually applied, where the number of neurons in the hidden layer and the training parameters are
systematically varied [39]. A similar approach is used in the modelling assistant, where many neural models with different
parameters are identified in a sequence.

The selection of the model with best generalisation properties is made with a validation procedure. As extensive historical
process data represent the basis for HPC design, there should not be a problem to obtain different validation datasets. A di-
rect comparison of the generated models on the datasets not used in the training is therefore applied to distinguish the mod-
el with the best generalisation characteristics. Automatic validation is implemented, where many different validation
datasets and alternative types of validations (simulation, k-step ahead predictions) can be evaluated. A direct comparison
of the overall performance criteria (MSE, NPE) provides a simple way of finding the most robust neural-network model.
Fig. 6. Main window of the modelling assistant.
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Furthermore, to also guarantee model quality for long-term operation, the performance of the HPC model needs to be
monitored. The developed modelling-assistant tool enables the users to build and validate the model predictions with recent
production data. Such a verification of the model alerts the user that a different model should be selected from the base of
previously generated models or a new model should be identified from the newly acquired production data.

The main structure of the program can be viewed from Fig. 6, where the main window of the modelling assistant is
shown.

The modelling assistant is based around the NNSYSID toolbox [41], where neural-network-related routines are imple-
mented. This toolbox was applied, as it is specialised for system identification and as it tends to simplify neural-model der-
ivation, with the reduction of many tuning parameters. The NNSYSID toolbox generally supports many model structures
(NARX, NARMAX, NOE, NSSIF, NIOL etc.), different network-training algorithms and methods to prevent overfitting (regular-
isation and pruning algorithms). A complete overview of the implemented methods is available in [41].
5. A pPI model of the Tennessee Eastman benchmark process

To test the HPC concept an appropriate case study is needed. Our work is based on the well-known benchmark model of a
real industrial plant, Tennessee Eastman (TE), which can be viewed as a complete and complex production process with
many measured and manipulative variables.
5.1. Short introduction of TE process

The TE benchmark process was introduced by Downs and Vogel [42] as a model of a real chemical production process. The
model represents a test problem for researchers to experiment with different control-related solutions. As depicted in Fig. 7,
the process consists of five major units: a chemical reactor, a product condenser, a vapour–liquid separator, a product strip-
per and a recycle compressor. Four reactants (A, C, D, E) and an inert component (B) are entering the process, where four
exothermic, irreversible reactions result in two products (G, H) and one byproduct (F). The process products leave the pro-
cess through stream 11, where they are separated in a downstream refining section. The production process has 41 measured
variables (y) and 12 different manipulative variables (u).

A specific combination of the production rate and/or the product mix are usually demanded by the market or some capac-
ity limitations. Therefore, six typical operational modes (see Table 1) are defined in the article [42].

The model also provides 20 different process disturbances (for details see [42]), which imitate the disturbances typical of
real TE production.
Fig. 7. Production scheme of the Tennessee Eastman process.



Table 1
List of the Tennessee Eastman production modes defined by Downs and Vogel [42].

Mode G/H mass ration Production rate (stream 11)

1 50/50 7038 kg h�1 G and 7038 kg h�1 H
2 10/90 1408 kg h�1 G and 12;669 kg h�1 H
3 90/10 10;000 kg h�1 G and 1111 kg h�1 H
4 50/50 Maximum
5 10/90 Maximum
6 90/10 Maximum
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5.2. Data preprocessing

The data preprocessing step can be skipped for our case study, as we are working with the simulation model, where mea-
surements have no outliers or other severe data anomalies. However, the process measurements do still have some inten-
sionally added noise, typical for the specific measurement [42].
5.3. Definition of pPIs

The economic objectives can be translated to the production PIs, i.e., information related to the plant’s efficiency that has
to be extracted from a vast amount of available process measurements. With a holistic production control, where the pPIs are
controlled, these economic objectives are optimised.

As the first pPI, an estimation of the production Cost is selected. The formulation of the cost function was already intro-
duced by the authors of the TE model [42]. The costs are calculated from the process measurements in units of $=h and are
formulated as shown in (5). The first row of the equation evaluates the costs of the compressor work and steam expenses,
while other rows evaluate the loss of the components leaving the process with the product and purge.
Cost ¼ 0:0318
$

kW h
� y19 þ 0:0536

$

kg
� y20 þ 0:0921

kg mol
m3

� y17 22:06
$

kg mol
� y37 þ 14:56

$

kg mol
� y38 þ 17:89

$

kg mol
� y39

� �
þ 0:04479

kg mol h�1

ks cm h
� y10 2:209

$

kg mol
� y29 þ 6:177

$

kg mol
� y31 þ 22:06

$

kg mol

�
� y32 þ 14:56

$

kg mol
� y33 þ 17:89

$

kg mol
� y34 þ 30:44

$

kg mol
� y35 þ 22:94

$

kg mol
� y36

�
ð5Þ
Next, we want to express the productivity of the process. The definition of this pPI is quite straightforward, as the quan-
tity of product leaving the process is directly measured (Production ¼ y17). Directly from the process objectives an indicator
for the process quality is also derived, since the product quality can be viewed as a desired mass ratio between the two final
products, G and H (Quality ¼ y40).
5.4. Selection of model inputs

The TE process is a highly unstable system, and without low-level process control it exceeds the process safety limits and
automatically shuts downs within an hour. We used the system that was stabilized with the low-level control presented in
the work of Larsson et al. [43], where nine outputs are controlled with cascade loops.
Table 2
Process manipulative variables.

Notation Controlled variable setpoints

Fp Production rate index
R2 Striper level
R3 Separator level
R4 Reactor level
R5 Reactor pressure
R7 %C in purge
R8 Recycle rate
R9 Reactor temperature
r2 D/E feed rates
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In order to use this problem for a demonstration of the HPC concept, a few changes to the low-level control were needed.
As Production and Quality are already controlled, the original control scheme had to be slightly modified. Production rate loop
and Product ratio loop were removed and two new manipulative variables were defined (i.e. Fp and r2). In this way the con-
trol of the Quality and Production was intentionally moved from the process level to the production level, where the HPC is
being realised.

The TE process with a modified low-level control has nine manipulated variables (see Table 2), which should be employed
to realise the objectives dictated by the systems from the business layer. To simplify the model structure and to reduce the
optimisation problem, only the inputs with the greatest impact on the outputs have to be determined. For such an analysis
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Fig. 8. Cross-correlation analyses between input R8 and each of the outputs are presented in the last row. The figure is also depicts the cross-correlation
coefficient (CC), indicating a match of the tested signals.
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we do not need to perform an exhaustive subset selection, instead a simple variable-ranking method of cross-correlation is
employed for each of the pPIs.

The experiment on the process is performed, where each input signal is changing over the vast operating range of the
tested variable. The input–output signal of 200 h is obtained, where all the potential inputs are randomly changing. A
cross-correlation analysis is then applied to the simulation data for every input and output. Fig. 8 illustrates part of the per-
formed analysis, where the relations between the input R8 and all three outputs are evaluated with the cross-correlation cri-
terion. According to the scores of the cross-correlation coefficients, the following inputs were selected: Fp;R8 and r2. The
model structure is therefore reduced to the three most influential inputs and three outputs (pPIs of the TE process).
5.5. Derivation of the neural network model

Based on the determination of the pPIs and the most influential inputs an input–output structure of the model to be de-
rived was defined, as depicted in Fig. 9a Fig. 9b illustrates the inner structure of the model with respect to the TE process
used.

In the next step the derivation of the model structure and parameters using neural networks will be presented.
A dynamical model structure should be assumed, as the response of the production process does not depend only on the

current input variables, but also on the current states of the process. A nonlinear autoregressive exogenous input (NARX) is
applied, where previous records for the inputs and also the outputs are taken into consideration [37]. The regression vector,
which represents the first mapping of the model (c.f. Section 3.4), is defined as:
uðtÞ ¼ ½yðt � 1Þ; . . . c; yðt � naÞ; uðt � 1Þ; . . . c; uðt � nbÞ�T ð6Þ
In contrast to some other, more comprehensive, model structures, the NARX predictor is stable, despite possible model-
ling errors. The stability issue of a prediction is satisfied as there is a pure algebraic relationship between the prediction and
past measurements of the outputs and inputs [44].

To estimate the proper model order (i.e., to specify na and nb), a model-free, subset-selection method is applied. With the
use of the Lipschitz method [36], the delayed inputs and outputs for the NARX model can be determined solely on the basis
of the input–output data, as the optimal smoothness of the mapping, with respect to model order, is examined. As noise is
usually present in the signal, it is hard to resolve the exact order of the process. However, the region of the exact solution can
pPI model

Fig. 9. Structure of the pPI model for the TE process.



Table 3
Modelling settings.

Option Value

Number of delayed outputs as regressors na ¼ 1
Number of delayed inputs as regressors nb ¼ 2 and 3
Input time delay nk ¼ 1
Number of neurons in hidden layer From 1 to 10
Regularisation parameter D ¼ 0; 10�5; 10�4; 10�3
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still be determined. The method is applied to the training dataset and a regression vector with two or three delayed inputs
and one delayed output is selected.

A simulated historical run in the time range of 800 h is recorded, where the most influential inputs are changing, in order
to reach different operating conditions. The simulated historical run is further divided into three individual signals, which
will be later used to find an appropriate model and to test the quality of the model with the data not used in the training.

The neural network toolbox (NNSYSID [41]) used within the modelling assistant is limited to MISO systems. Therefore,
three different models have to be identified, one for each output (Cost; Production and Quality).

In the search for the best model, various architecture-related parameters were tested (see Table 3). With the use of the
modelling assistant, 80 models with alternative network structures are automatically trained for each of the outputs. The
network training was performed with the Levenberg-Marquadt [44] learning algorithm because of its fast convergence
for moderate-sized, feedforward neural networks. To enhance the convergence to the global minimum, prior to the training
some small random weights and biases are assumed. Additionally, the modelling assistant scaled the process data to a mean
value of 1 and a standard deviation of zero.

To enhance the generalisation capabilities of the acquired models, the stopping criteria and the weight-decay regularisa-
tion [44] were applied during the training. With the help of the modelling assistant the alternative weight decay settings D
(see Table 3) are considered. Furthermore, the irrelevant connections in the network structure were removed, using OBS
pruning [45]. The optimal network structure from the pruning procedure was selected with the validation on the second part
of the dataset. According to the validation with the MSE criterion of the one-step-ahead prediction and simulation response
from each network, two additional pruned networks were found, one for each validation response. A total of 240 potential
network models were identified for each output in our case study.

5.6. Model validation

Many neural networks were generated, and among them those with the best generalisation capabilities need to be iden-
tified. As models will be used in the model-based control and optimisation, a few-steps-ahead predictions will be needed.
Therefore, the models are validated with 10- and 20-steps-ahead prediction on the validation process signal. The difference
between the TE process and the neural network model responses are evaluated with the MSE criterion. With respect to such
a validation criterion for each output the best model is selected. It can be seen from the topologies of the selected networks
(Fig. 10), that the least important weights were completely removed and also some of the inputs were pruned off, as their
contribution to the prediction is inadequate.

To assess the performance of the model in comparison to the process, three validation experiments were carried out.
The first experiment (Fig. 11) represents the simulation responses for the third part of the dataset, which was not used in

the training procedure. As such it represents a test for the generalisation capabilities of the obtained model.
The results of the second experiment are depicted in Fig. 12, where the production process is changing in accordance with

the different pre-defined production modes (cf. Table 1).
The influence of the process disturbances on the model predictions is tested in the last validation. The model inputs are

set constant, while some disturbances are introduced in the process (t = 0–15 h – disturbance 1: step change in A/C ratio in C
feed; t = 50–75 h – disturbance 4: step change of reactor cooling water inlet temperature; t = 100–115 h – disturbance 8: ran-
dom variation in A, B, C feed composition; t = 150–175 h – disturbance 12 – random variation in the condenser cooling-water
inlet temperature and disturbance 15: random variation in condenser cooling-water valve). Fig. 13 depicts two-steps-ahead
predictions for this validation dataset.

Table 4 compares the prediction performance for the presented model responses, where the performance indexes of the
Normalised Prediction Error (NPE – Eq. (7)), Integral of Absolute Error (IAE – Eq. (8)) and standard deviation of the prediction
error are evaluated.
NPE ¼
PN

t¼1ðŷðtÞ � yðtÞÞ2PN
t¼1y2ðtÞ

" #1=2

� 100% ð7Þ

IAE ¼
XN

t¼1

jŷðtÞ � yðtÞj ð8Þ



Fig. 10. Selected neural model architecture for Cost, Production and Quality.
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From the model responses we can conclude that the Production and Quality PIs can be efficiently predicted. The long-term
prediction of Cost was shown to be a more demanding task, since its definition is far more complex and it is connected with
many process variables. Nevertheless, the resulting model describes satisfactorily the dominant dynamics and is prepared to
be used for closed-loop control.

5.7. Model validation within production control

The practical usefulness of the model was also studied with more realistic validation tests. The model was used within the
MPC controller to control a production process, which is represented by a complex non-linear model of the Tennessee East-
man process. In the following subsection a short introduction to the MPC strategy for HPC is presented. In subsection 5.7.2,
the control results are presented and compared with the results obtained by other authors.

5.7.1. Production control
The purpose of the production model is to forecast the behaviour of a production process and to be used in production

control. The model’s knowledge about the system should be used to define the optimal values for manipulative variables,
which would help the production manager to realise the business objectives more efficiently. This simplified process knowl-
edge does not provide a detailed insight into the production process, but can still contribute to a better realisation of the
business objectives and can help production managers with their decisions.

The most widely applied model-based control is the realisation of receding horizon control [46,47]. Such model predictive
control (MPC) iteratively solves the finite-horizon optimisation of a plant model under process constraints. Only the control
solution for the first time instance uðkþ 1Þ is applied to the process, then the plant calculations are repeated, starting from
the new model states, which are equivalent to the current process state measurements. In each iteration step the optimal
solution of the following cost function should be calculated:



Fig. 11. Time responses of the selected model on a validation dataset. The solid line represents the actual response of the TE process and the dashed line the
simulation response of the model.

Mode 1 Mode 2 Mode 3

G/H mass ratio = 50/50

G/H mass ratio = 10/90

G/H mass ratio = 90/10

Fig. 12. Validation of the models on the dataset, where the process operates close to different production modes (see Table 1). The solid line represents the
actual response of the TE process and the dashed line the simulation response of the model.
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Fig. 13. Model validation on the dataset with constant model inputs and added process disturbances [42]. Solid line represents actual response of the
process, dashed line represents 2-step ahead prediction of the model. The histograms of normalised model errors (NE ¼ ðŷ� yÞ=�y) depict the mismatch
between model and process.
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Table 4
Evaluation of NPE, IAE and standard deviation of the error for different validation datasets.

Cost Production Quality

NPE IAE Std. NPE IAE Std. NPE IAE Std.

Fig. 11 10.6722 8748.93 13.8115 0.7010 104.89 0.1671 1.0534 353.69 0.5482
Fig. 12 16.7905 12348.62 20.2617 0.8579 116.59 0.1732 1.0294 389.35 0.6218
Fig. 13 10.8104 6116.54 12.3397 0.5906 86.36 0.1293 0.9985 346.70 0.5292

Fig. 14.
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XHp

j¼1

kŷsðkþ jÞ � rðkþ jÞk2
Qs
þ
XHp

j¼1

kŷmðkþ jÞk2
Qm
þ
XHc

j¼1

kDuðkþ j� 1Þk2
Qu

ð9Þ
where ŷs and ŷm refer to the setpoint-controlled and minimisation-oriented pPIs (in Fig. 2 marked as K), respectively; r is a
vector of the desired business objectives for setpoint-controlled pPIs (K�); and Du marks the change of the manipulating sig-
nal (DKu), which is defined as Duðkþ jÞ ¼ uðkþ jÞ � uðkþ j� 1Þ for time instance j. The operators k � kQs

; k � kQm
and k � kQu

rep-
resent the weighted Euclidean distances, with weights Qs;Q m and Q u. The weight Q u penalises relatively big changes in
control moves uðkþ jÞ and with the proper selection of weights Q s and Qm, the control objective priority for setpoint-con-
trolled pPIs (ys) and minimisation-oriented pPIs (ym) can be adjusted.

Note, that within the HPC concept, the calculated control moves represent only the suggestion, given as a decision sup-
port to help the production manager and in practice an operator has the possibility to interact. In the frame of our experi-
ment we have, however, designed a classical MPC controller.

An MPC controller with the following characteristics was implemented. The prediction horizon was chosen to be Hp ¼ 17
time samples and the control horizon Hc ¼ 8. To decrease the computational burden, the input blocking (IB) technique [48]
was applied, where the control signal is set to be constant over a few time instances in the optimisation routine. The blocking
setting was selected as ½1 1 2 2 2 3 3 3�, where each element of the vector indicates the number of consecutively constant
time samples. To obtain the offset-free tracking in steady-state conditions, the difference in the model response and the pro-
cess measurements was considered as a constant disturbance on the model output [49].
5.7.2. Simulation experiments and evaluation of results
To verify the usability of the model we carried out several simulation experiments. The considered pPI model consists of

two setpoint-controlled pPIs (Production, Quality) and one minimisation-oriented pPI (Cost). In the first control experiment,
Production and Quality are controlled in accordance with pre-defined production modes and the Cost minimisation objective
is not considered. The pPI responses and reference values are shown in Fig. 14. It is clear that the Production and Quality pPIs
follow the reference values.
Mode 1 Mode 2 Mode 3

G/H mass ratio = 50/50

G/H mass ratio = 10/90

G/H mass ratio = 90/10

First control experiment, where the process is controlled in accordance with different pre-defined production modes. The solid black line represents
ponse of the TE process and the dashed bright-grey line the control setpoints. The figure is plotted with the sample rate of the TE process
0:01).



dist. 8
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disturbance 1

Fig. 15. Second control experiment from the work of Larsson et al. [43]. The process is controlled without a cost-minimisation objective (Qm ¼ 0) and the
figure is plotted with Tsfig

¼ 0:01.

Table 5
Validation of second control experiment, where the Cost minimisation priority (Q m) was gradually increased.

Method
P

(Cost) [$] Production Quality

NCE (%) IAE Std. NCE (%) IAE Std.

Larsson et al. [43] 12278.54 0.5680 1055.54 0.1327 1.8766 7356.96 0.9797
HPC

Qm ¼ 0 12287.81 0.5979 1107.46 0.1398 1.3123 5484.03 0.6832
Qm ¼ 0:0005 12247.15 0.6058 1123.09 0.1402 1.3255 5540.10 0.6849
Qm ¼ 0:001 12165.36 0.6227 1157.09 0.1403 1.3427 5612.19 0.6858
Qm ¼ 0:005 11988.89 0.9902 1956.40 0.1427 1.6063 6835.21 0.6940
Qm ¼ 0:008 11848.36 1.3992 2935.21 0.1497 1.9499 8536.91 0.7128
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With the second control scenario we compared the effectiveness of our control with the results presented in the work of
Larsson et al. [43]. The setpoints for Production and Quality are varied around the first operating mode. In addition, four dif-
ferent process disturbances are turned on during the experiment, as marked in Fig. 15.

To evaluate the control performance of the setpoint-controlled pPIs, the Normalised Control Error (NCE), IAE and standard
deviation of the error are observed. The criteria are defined as displayed in Eqs. (7) and (8), where NCE is normalised with the
reference value (r) and the control error is defined as eðtÞ ¼ yðtÞ � rðtÞ. In addition, overall costs are evaluated as the accu-
mulation of the cost through the overall experiment.

The case when there is no direct minimisation of the Cost (Qm ¼ 0) and the objectives for Prouction and Quality are
set as equally important, is shown in Fig. 15. This test run can be directly compared with the results published in
[43]. According to the criteria presented in Table 5, the control of Quality achieved much better tracking characteris-
tics, while achieving comparable Production control performance and similar overall Costs. In the next step of the val-
idation, the Cost reduction objective (Qm) is gradually increased. Different control runs are compared in Table 5. A
graphical representation of the results is also shown in Fig. 16, where a comparison with the results published by
Larsson et al. [43] is presented. In Fig. 16, the second control scenario is presented for the additional case, when
the Production control objective is set as more important than the tracking control of Quality pPI. From the figures
it is clear that HPC drives the process to the working conditions, which satisfy the objectives dictated from the busi-
ness level.

The results show that it is possible to influence the overall costs of the process, with the introduction of a simple pPI mod-
el. The increased importance of the Cost minimisation objective results in lower accumulated Costs over the experiment. As
expected, it is clear from Fig. 16, that lower Costs result in less accurate performance for Production and Quality, as the process
has moved to the more Cost effective working condition. The presented experiments show that the prediction capabilities of
the developed model are sufficient.
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Fig. 16. Results of the second control experiment, where the Cost minimisation objective (Qm) is gradually increased. Qs weight refers to the importance of
the tracking control objective for Production and Quality, respectively.
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6. Conclusion

In this paper the issues regarding the modelling procedure for holistic production control are studied. The procedure con-
sists of several steps: data preprocessing, determination of pPIs, input selection and black-box modelling. We have demon-
strated the production modelling procedure in a case study of the Tennessee Eastman process. Here, the most influential
inputs are adequately defined with the cross-correlation analysis and the neural networks are used to identify the model.

The comparison of the derived model responses and the original production process data showed that the model is appro-
priate. Additional validation of the model was performed, where model predictive control was realised in order to control
Cost, Production and Quality. The results show that with the presented modelling methodology it is possible to obtain dynam-
ical pPI models, which could be used within the HPC concept.

We have also noticed that the problem of inputs selection appears to be one of the most challenging problems in the pPI
modelling procedure. Therefore, further research should be focused on an evaluation of the appropriate methods, where a
determination of the input–output causal relations and a ranking of the inputs according to their sensitivity to the pPIs,
should be performed.
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